1,822 research outputs found

    Novel integrative genomics strategies to identify genes for complex traits

    Get PDF
    Forward genetics is a common approach to dissecting complex traits like common human diseases. The ultimate aim of this approach was the identification of genes that are causal for disease or other phenotypes of interest. However, the forward genetics approach is by definition restricted to the identification of genes that have incurred mutations over the course of evolution or that incurred mutations as a result of chemical mutagenesis, and that as a result lead to disease or to variations in other phenotypes of interest. Genes that harbour no such mutations, but that play key roles in parts of the biological network that lead to disease, are systematically missed by this class of approaches. Recently, a class of novel integrative genomics approaches has been devised to elucidate the complexity of common human diseases by intersecting genotypic, molecular profiling, and clinical data in segregating populations. These novel approaches take a more holistic view of biological systems and leverage the vast network of gene–gene interactions, in combination with DNA variation data, to establish causal relationships among molecular profiling traits and Fbetween molecular profiling and disease (or other classic phenotypes). A number of novel genes for disease phenotypes have been identified as a result of these approaches, highlighting the utility of integrating orthogonal sources of data to get at the underlying causes of disease

    WISP genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors

    Get PDF
    Wnt family members are critical to many developmental processes, and components of the Wnt signaling pathway have been linked to tumorigenesis in familial and sporadic colon carcinomas. Here we report the identification of two genes, WISP-1 and WISP-2, that are up-regulated in the mouse mammary epithelial cell line C57MG transformed by Wnt-1, but not by Wnt-4. Together with a third related gene, WISP-3, these proteins define a subfamily of the connective tissue growth factor family. Two distinct systems demonstrated WISP induction to be associated with the expression of Wnt-1. These included (i) C57MG cells infected with a Wnt-1 retroviral vector or expressing Wnt-1 under the control of a tetracyline repressible promoter, and (ii) Wnt-1 transgenic mice. The WISP-1 gene was localized to human chromosome 8q24.1-8q24.3. WISP-1 genomic DNA was amplified in colon cancer cell lines and in human colon tumors and its RNA overexpressed (2- to >30-fold) in 84% of the tumors examined compared with patient-matched normal mucosa. WISP-3 mapped to chromosome 6q22-6q23 and also was overexpressed (4- to >40-fold) in 63% of the colon tumors analyzed. In contrast, WISP-2 mapped to human chromosome 20q12-20q13 and its DNA was amplified, but RNA expression was reduced (2- to >30-fold) in 79% of the tumors. These results suggest that the WISP genes may be downstream of Wnt-1 signaling and that aberrant levels of WISP expression in colon cancer may play a role in colon tumorigenesis

    Mapping of QTL for intermedium spike on barley chromosome 4H using EST-based markers

    Get PDF
    The lateral spikelets of two-rowed barley are reduced in size and sterile, but in six-rowed barley all three spikelets are fully fertile. The trait is largely controlled by alleles at the vrs1 locus on chromosome arm 2HL, as modified by the allele present at the I locus on chromosome arm 4HS. Molecular markers were developed to saturate the 4HS region by exploiting expressed sequence-tags, either previously mapped in barley to this region, or present in the syntenic region of rice chromosome 3. Collinearity between rice and barley was strong in the 4.8 cM interval BJ468164-AV933435 and the 10 cM interval AV942364-BJ455560. A major QTL for lateral spikelet fertility (the I locus) explained 44% of phenotypic variance, and was located in the interval CB873567-BJ473916. The genotyping of near-isogenic lines for I placed the locus in a region between CB873567 and EBmac635, and therefore the most likely position of the I locus was proximal to CB873567 in a 5.3 cM interval between CB873567-BJ473916

    Comparing linkage and association analyses in sheep points to a better way of doing GWAS

    Get PDF
    Genome wide association studies (GWAS) have largely succeeded family-based linkage studies in livestock and human populations as the preferred method to map loci for complex or quantitative traits. However, the type of results produced by the two analyses contrast sharply due to differences in linkage disequilibrium (LD) imposed by the design of studies. In this paper, we demonstrate that association and linkage studies are in agreement provided that (i) the effects from both studies are estimated appropriately as random effects, (ii) all markers are fitted simultaneously and (iii) appropriate adjustments are made for the differences in LD between the study designs. We demonstrate with real data that linkage results can be predicted by the sum of association effects. Our association study captured most of the linkage information because we could predict the linkage results with moderate accuracy. We suggest that the ability of common single nucleotide polymorphism (SNP) to capture the genetic variance in a population will depend on the effective population size of the study organism. The results provide further evidence for many loci of small effect underlying complex traits. The analysis suggests a more informed method for GWAS is to fit statistical models where all SNPs are analysed simultaneously and as random effects
    corecore